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The development of TROV was performed during the
summer of 1993. Since the vehicle uses the same ARCA
subsystems as the Mobile Exploration Landrover, much of
the TROV hardware and software systems were derived
directly from that vehicle. Additionally, development of the
vehicle controller was significantly enhanced by the use of
commercial technology (i.e., VME processing hardware
and VxWorks). In addition, the framework provided by
ARCA greatly shortened development time by successfully
enabling efficient teamwork and parallel subsystems de-
velopment.

During the fall of 1993, TROV will be deployed in McMurdo
Sound, Antarctica and controlled from multiple operator
stations located at NASA Ames. The vehicle will be used in
conjuction with VEVI and asynchronous processing (i.e.,
video frame capture, stereo image range correlation, etc.) to
demonstrate the capabilities for performing science from a
remote site. In this configuration, the complete system will
demonstrate full utilization of the ARCA structure as shown
in Table 6.

V. Conclusion

ARCA provides a framework which enables the efficient
team-based development of space telerobotic systems.
The architecture was developed from a systems engi-
neering perspective and is embodied by a core philoso-
phy which supports extensible modular design and
implementation. The design principles which guided the
development of ARCA are reflected in the systems
constructed with the architecture. Most importantly, it
has been shown by these systems that modularity and the
use of commercial technology can provide significant
development benefits and increased system performance.

The architecture’s capabilities have been clearly demon-
strated by several operational telerobotic systems in field
environments. These systems are characterized by short
development time, modularity, flexibility, and a broad
spectrum of computational needs. The success of these
systems outside laboratory settings shows that ARCA
provides the necessary tools and environment in which
complex robotic systems can be rapidly and effectively
constructed.

It must be noted, however, that the design of any robotic
computational architecture does not end with the initial
implementation. In order to maintain and further its
success, ARCA is continuing to evolve to meet the needs
of future space telerobotic systems. Systems engineering
is always an interative process, hence, only through
continued research and refinement can truly successful
design be achieved.
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Subsystem Description

Processing 
hardware

embedded (VME bus components)
standalone (SGI/Sun workstations)

Standardized 
communications

Task Control Architecture

Synchronous 
processing

TROV Controller (VxWorks)

Loosely- 
synchronous 
processing

VEVI (WorldToolKit)

Asynchronous 
processing

Stereo range correlator
Video frame capture and storage

Table 6. TROV and VEVI usage of ARCA
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by an on-board controller which performs tasks such as
motion (rate) control and state estimation. Three ARCA
subsystems are used: embedded processing hardware (VME
bus single-board computer and peripherals), standardized
communications (TCA), and synchronous processing
(VxWorks).

The vehicle development has been, and continues to be,
highlighted by the use of modular components. The on-
board processing hardware, for example, is identical to other
IMG robotic systems and enables the reuse of components
(e.g., interface boards, sensors, etc.) from other devices.
Additionally, the use of a common synchronous processing
system (i.e., VxWorks) encourages consistent, modular
software design and the sharing of code (e.g., control
software, device drivers) with other real-time systems. More
importantly, modularity has provided the significant benefit
of increased systems reliability and robustness.

The most significant benefit realized with ARCA, however,
is the flexibility provided by standardized communications.
The use of TCA has allowed the Mobile Exploration
Landrover to be quickly integrated with a variety of operator
software including a command line interface, a X Windows
based GUI, and VEVI. This has enabled teleoperation by a
wide range of operators with a broad spectum of control
capabilities. For example, the vehicle has been driven both
from a home computer (i.e., an IBM PC) as well as VEVI
running on a high-end Silicon Graphics workstation13.

Telepresence Remotely Operated Vehicle

The Telepresence Remotely Operated Vehicle (TROV) is an
underwater robotic vehicle designed for performing scien-
tific field work in undersea environments16. The vehicle is
being utilized as part of a joint pilot program between NASA

and the National Science Foundation. The primary objective
of this program is to use the Antarctic as an analog environ-
ment for the development and testing of systems for use in
future space exploration.

TROV is a commercially available underwater
SuperPhantom II vehicle (see Figure 3) built by Deep Ocean
Engineering (San Leandro, CA) which has been extensively
modified by the IMG for long-distance teleoperations. At
present, the vehicle is equipped with four cameras (includ-
ing pan/tilt stereo pair), acoustic navigation, several science
sensors, and a simple manipulator arm. Overall system
management is performed by an off-board controller which
handles navigation, motion control (rate and station keep-
ing), manipulator operation, sensor monitoring, and house-
keeping tasks (e.g., lighting, camera functions). The control-
ler, which uses the same components as other IMG systems,
is connected to the vehicle by a 1,000 foot power and control
umbilical.

Figure 5: Mobile Exploration Landrover

Operator

Flat-panel GUI
(X Windows)

Input sensors
(head tracker,

hand controllers)

Supervisory modules
(path planner, 
task planner)

Vehicle

World Model
(geometry)

Standardized
Communications

(TCA)

Vehicle simulator
(kinematics, 
dynamics)

3D graphics 
simulation

(WTK)

Display devices
(head mounted,

stereo, windowed)

Figure 4: VEVI structure
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controlled vehicle and the environment in which the vehicle
is operating. Feedback from on-board vehicle sensors is
used to update the simulated vehicle state and world model.
Operators interact asynchronously with VEVI to control the
graphical vehicle or to change inteface parameters (e.g.,
field-of-view, viewpoint). Under direct teleoperation,
changes to the graphical vehicle are communicated in real-
time via TCA to the actual device. For supervisory control,
task-level command sequences are planned within VEVI
then relayed to the vehicle controller for autonomous execu-
tion. This paradigm enables vehicle control in the presence
of lengthy transmission delays and latencies, while increas-
ing operator productivity and reducing fatigue. Figure 4
presents the overall structure of the VEVI system.

The ARCA subsystems included in VEVI are standalone
processing hardware (Silicon Graphics workstations), stan-
dardized communications (TCA), and loosely-synchronous
processing (WorldToolKit and X Windows). These ele-
ments have provided and continue to offer three important
benefits. First, the use of commercially available technology

made rapid software development possible. From concep-
tion to initial use required only two man-months effort.
Second, modularity provides the flexibility required for fast
integration of robotic devices into the VEVI system. Inte-
gration of the Russian Marsokhod rover, for example, was
performed in only three days during February 199313. Fi-
nally, standardized communications allows efficient long-
distance operations. Though the Marsokhod integration
time was short, the use of TCA enabled remote operations
to be conducted in Moscow from NASA Ames (Moffett
Field, CA)13.

Mobile Exploration Landrover

The Mobile Exploration Landrover is a semi-autonomous
wheeled vehicle intended to support the Human Exploration
Demonstration Project (HEDP)15 and has been under de-
velopment at NASA Ames since July 1992. The vehicle has
two independent drive wheels and a variety of sensing
devices (e.g., differential GPS, NTSC color cameras) as
shown in Figure 5. Overall vehicle management is handled

(a)

(c)

(b)

Figure 3: Vehicles controlled with VEVI
(a) Russian Marsokhod rover (Moscow, May 1993)

(b) air-bearing floater (Stanford University, May 1993)
(c) Telepresence Remotely Operated Vehicle

(NASA Ames, July 1993)



8

graphical user interfaces (GUI) the X Windows and Motif

protocols are utilized. These protocols provide a network
transparent, portable system for client-server text and graph-
ics applications. Windowed status displays (e.g., vehicle
position strip chart) are easily built using GUI construction
tools. Second, to support interactive 3-D graphical interfaces,
the Sense8 Corporation's WorldToolKit  (WTK) library is
used. WTK provides an easy to use, platform independent
environment for rapid prototyping and development of 3-D
interfaces. This library enables the creation of stereoscopic
virtual environment systems. Both X Windows/Motif and
WTK applications are designed for C language development
and can be executed on the UNIX workstations described
previously. Additionally, X Windows/Motif has become a
recognized standard and is expected to remain so.

Asynchronous

ARCA’s asynchronous processing includes those computa-
tional systems which utilize event (interrupt) driven or free-
running processing without explicit program synchroniza-
tion. Almost all non real-time and UNIX applications can be
classified into the asynchronous domain. Representative
applications include exception monitors, task level (strate-
gic) planners, trajectory generators, vision systems, and
decision making systems. These applications are modeless
and typically are not synchronized to other modules.

Within ARCA, asynchronous processing may be performed
on any type of processing hardware. In embedded systems,

interrupt driven modules may be used to signal error condi-
tions or to initiate reactive behavior. In standalone hardware,
free-running vision systems may asynchronously generate
range maps. No specific software restriction is given within
this domain except that compatiblity with TCA is required
for communications.

IV. Case Studies

The following sections present case studies of operational
robotic systems developed using ARCA. These systems
demonstrate the flexibility of the computational architecture
and the benefits realized during development of each.

Virtual Environment Vehicle Interface

The Virtual Environment Vehicle Interface (VEVI) is a
modular operator interface for direct teleoperation and
supervisory control of robotic vehicles. VEVI utilizes real-
time interactive 3D graphics and position/orientation sen-
sors to produce a range of interface modalities from flat-
panel (windowed or stereoscopic) screen displays to head-
mounted/head-tracking stereo displays. A representative
VEVI display is shown in Figure 2. The interface provides
generic vehicle control capability and has been used to
control wheeled, air bearing, and underwater vehicles in a
variety of environments (see Figure 3).

VEVI executes as a loosely-synchronous process on Silicon
Graphics workstations, rendering a scene with models of the

Figure 2: The Virtual Environment Vehicle Interface (VEVI)
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The advantages of TCA, however, greatly outweigh its
limitations. In particular, TCA provides a flexible, reliable,
and easy to use communications method which greatly
speeds program development. Centralized message routing,
for example, facilitates the debugging of intermodule com-
munications and coordination. Additionally, since TCA
utilizes TCP/IP, it is intrinsically capable of long distance
communications via the InterNet. The IMG, for example,
has successfully used TCA to provide reliable communi-
cations between sites in California and France13. Lastly, the
impact of centralized routing and transmission bandwidth
can be reduced via appropriate usage, such as limiting
communications to coarse-grained message passing.

Synchronous Processing

ARCA’s synchronous processing encompasses all software
systems which require a common clock, regular execution,
strict execution schedule, or tight synchronization. This type
of processing is colloquially known as hard real-time, and
is typified by sampled data and control systems. To fulfill the
requirements of this real-time domain, it is necessary to
utilize an operating system which provides features such as
multitasking, preemptive scheduling, low latency context
switching, fast intertask synchronization, and bounded worst-
case performance. This last feature is especially critical for
guaranteeing a regular, strict execution schedule and meet-
ing hard deadlines.

In ARCA, all synchronous processing systems is performed
on embedded hardware using WindRiverSystem, Inc.’s

Table 4. ARCA embedded processing hardware (VME bus based)

VxWorksreal-time operating system. VxWorks was cho-
sen because it provides a well-integrated development and
execution environment, an extremely efficient real-time
kernel, standard networking facilities, and a high degree of
UNIX compatibility. Thus, it is simple to integrate VxWorks
applications with UNIX or networked based systems. In
addition, VxWorks supports object-oriented toolsets, such
as ControlShell, which facilitate robotic control software
development14.

Loosely-synchronous

ARCA’s loosely-synchronous processing is similar to syn-
chronous processing with one notable exception. Whereas
synchronous processes requires strict execution and tight
synchronization, loosely-synchronous ones do not. A vir-
tual environment (VE) interface is representative of this
domain. Although such interfaces may execute at real-time
rates (e.g., 60 Hz), the vast majority do not require strict
execution deadlines. Execution latencies or lag is not cata-
strophic as it would be for hard real-time processes. As such,
a real-time operating system not an explicit requirement,
though some benefit might be gained if one is utilized.
Loosely-synchronous systems, however, do require some
level of execution scheduling and coordination. The VE
interface, for example, needs regular execution latencies to
prevent users from experiencing disorientation.

Since the primary use of loosely-synchronous processing in
ARCA are operator interfaces, two interface development
environments were chosen. First, to support traditional

Type Representative Use Representative Model

Single-board 
computer

Uniprocessor with multitasking Heurikon HK68/V3D (Motorola 68030 CPU)

Interface boards Communications & device 
interfacing via standard and 
custom protocols

Xycom XVME-400 (RS232C)
Matrix MD-DAADIO (A/D, D/A, PIO)
National GPIB-1014 (IEEE-488)

Specialized 
boards

Optimized processing for specific 
embedded tasks

Matrox VIP 640 (NTSC frame capture)
PMC DCX-VM100 (Motor controller)

Table 5. ARCA standalone processing hardware (UNIX workstations)

Type Representative Use Representative Model

Sun 
Microsystems, 
Inc.

UNIX applications
Compute server
X Windows interfaces

SparcStation 4/370 (SPARC RISC CPU)

Silicon Graphics, 
Inc.

UNIX applications
Compute server
Interactive 3-D graphics

4D/440 VGXT (MIPS R3000 CPU)
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Table 3. ARCA subsystems Standalone processing hardware is currently a mixture of
UNIX workstations as shown in Table 5. These systems are
used primarily for non real-time processing, compute inten-
sive applications, and operator interfaces. UNIX worksta-
tions provide tools, networking capability, and an environ-
ment well suited for software development. As with the
embedded hardware, the systems shown in Table 5 were
chosen due to large installed base and expected longevity.
Silicon Graphics workstations, in particular, have shown
significant improvements in recent years and provide
unparalled real-time, interactive graphics capabilities.

The flexibility offered by the above hardware provides the
extremely important benefit of commonality. All IMG
robotic devices, for example, are able to utilize a common,
modular set of embedded processing hardware. This di-
rectly enables reuse of hardware and software. Conse-
quently, the effort required for development and mainte-
nance is significantly reduced. Commonality, therefore,
provides a method for greatly improving the efficiency and
productivity of design.

Standardized communications

ARCA’s standardized communications provides a system
for interprocess communications and synchronization across
a heterogenous and distributed processing system. Presenting
a common programming interface, standardized communi-
cations facilitates teamwork by enabling modular develop-
ment and reducing the difficulty of systems integration. At
this time, standardized communications is achieved via the
base layer of Carnegie Mellon University’s Task Control
Architecture (TCA).

TCA is a distributed, layered architecture with centralized
control, communications occurs via coarse-grained mes-
sage passing between modules12. The base layer of TCA
implements a simple remote procedure call (RPC), in which
the central control determines which module handles a
particular message and in what order. This RPC interface
operates via Berkeley Unix TCP/IP protocols and ethernet
network transmission devices.

TCA was chosen because it is capable of providing
interprocess communications between processes in all three
ARCA processing domains and across a wide range of
computing hardware. The primary limitation of TCA is that
all communications are routed through the central control
facility. As a result, the central process may become a
bottleneck and communcations will deadlock if the process
execution stops. Of secondary concern is the bandwidth
provided by TCP/IP. TCA’s effective throughput has been
estimated to be approximately 200 kilobytes per second12.

Subsystem Description

Processing 
hardware

Computational hardware including 
single-board computers, 
workstations, & multiprocessors

Standardized 
communications

Interprocess communications 
across a heterogeneous, distributed 
processing system

Synchronous 
processing

Computation requiring a common 
clock, regular execution, strict 
execution schedule, or tight 
synchronization

Loosely- 
synchronous 
processing

Computation similar to 
synchronous processing but 
without strict execution schedule 
or tight synchronization

Asynchronous 
processing

Computation which utilize event 
driven or free-running processing 
without synchronization

IMG objective is to demonstrate potential space telerobotic
scenarios via earth-based simulations. If actual flight systems
were to be constructed, however, the modularity that ARCA
provides would easily allow the replacement of unsuitable
components with flight qualified ones.

Processing hardware

ARCA’s processing hardware is heterogenous, distributed,
and encompasses components required to support tasks
ranging from real-time vehicle control to operator interfaces.
The selection of a specific suite of hardware components is
difficult due to the continual improvement of commercially
available systems in conjuction with the on-going obsoles-
cence of existing hardware. Thus, it is essential to select
processing hardware which is not only appropriate to current
needs, but also which provides an upgrade path for satisfying
future requirements. The two types of ARCA processing
hardware can be categorized as embedded and standalone.

The current embedded hardware is VME bus based and
includes single-board computers, interface boards, and spe-
cialized processors (see Table 4). These components are
used primarily for on-board vehicle processing and for
synchronous tasks. VME bus was selected since it is a well
established standard, has a large installed user and manufac-
turing base, and has a clear evolutionary path to future
hardware. In addition, many VME manufacturers produce
ruggedized and low power boards, which are advantageous
for on-board vehicle systems.
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The fundamental philosophy of ARCA, however, is to
provide the minimal framework necessary to enable effi-
cient team-based systems development of space telerobotic
systems. Since it is infeasible to ascertain a priori what needs
all target applications will have, implementation details are
not rigidly specified. In other words, ARCA does not stress
a strict hierarchy or problem decomposition structure. Rather,
the architecture offers development tools and an environment
which encourages rapid, modular development and allows
maximum flexibility to the developer. At the same time,
ARCA provides a methodology for defining module inter-
faces and facilities for standardized communications. This
allows design to proceed efficiently while maintaining
modularity, flexibility, and extensibility of the system as a
whole. As a natural consequence, concurrent teamwork is
encouraged, complexity management is achieved, and the
difficulty of systems integration is reduced.

III. Implementation

Overview

From a systems perspective, the ARCA framework is seen
as the structure shown in Figure 1. There are five compu-
tational subsystems within the ARCA framework. The base
subsystems are processing hardware and standardized com-
munications. The other three systems are defined as process-
ing domains: synchronous, loosely-synchronous, and
asynchronous. Each processing domain utilizes elements of
the processing hardware subsystem. Interaction between
domains is handled via standardized communications. The
subsystems are described in Table 3.

These subsystem definitions are fairly broad due to the
difficulty of explicitly categorizing some types of process-

Table 2: Design principles of the Ames Robotic Computational Architecture (ARCA)

ing. Control systems, for example, are primarily synchro-
nous, yet may exhibit asynchronous behavior (i.e., halt on
exception). Similarly, graphical user interface interaction is
largely asynchronous, but may contain loosely-synchro-
nous status updates.

The following sections provide summaries of each ARCA
computational subsystem and presents details regarding
current hardware and software components. It should be
noted that many of these components are not suitable for
flight systems. The processing hardware described below,
for example, is not space-rated and is not likely to be in the
near term. This is not considered a defect, however, since the

Figure 1: Ames Robotic Computational Architecture
(ARCA)

Design Principle Benefits

Modularity • provides flexibility & extensibility
• eases design through encapsulation of complexity
• increases maintainability & reusability

Simplicity • increases reliability
• speeds development & integration
• reduces learning time

Flexibility • reduces brittleness from over-specification
• emphasizes importance of application specific needs
• encourages insertion of new technology

Heterogeneous Systems • diversity increases optimization of subsystems
• enables incorporation of wide range of computational systems
• allows integration of diverse components

Commercial Technology • use of “off-the-shelf” systems reduces development time
• reduces dependency on “one-of-a-kind” systems
• continual improvement due to market forces

Standardized
Communications

Loosely-
synchronous
Processing

Synchronous
Processing

Asynchronous
Processing

Processing Hardware

Sensors HumansMechanisms

embedded standalone
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Table 1. Rover computational processing requirements by scenario1

Processing requirements for space telerobotic systems also
vary significantly. Thus, the computational architecture
must provide appropriate facilities and resources to match
application specific processing needs. In the case of a
planetary rover, for example, on-board navigation activities
may involve manipulation and storage of large databases,
stereometric range-finding & correlation, path planning and
real-time command and control9. Estimates of these re-
quirements depend on mission scenario and are shown
above in Table 1.

It should be noted, however, that mission computing re-
quirements are often ill-defined or may not be accurately
specified. The figures given in Table 1, for example, are only
coarse estimates of rover mission needs. Actual mission
requirements, in fact, may vary by an order of magnitude and
may not be known until late in the design phase. Thus,
flexibility is also an important and necessary architectural
element. Flexibility during both design and implementation
allows better use of available technology, increases the
utilization of newly available technology and provides a
path for incorporating late design changes.

Approach

The Ames Robotic Computational Architecture (ARCA)
has been developed to fulfill these requirements and to
provide a foundation for developing space telerobotic sys-
tems. The architecture specifically supports robotic opera-
tions utilizing direct teleoperation to time-delayed supervi-
sory control in diverse environments. Thus, the architecture
provides facilities for a wide spectrum of computational
needs ranging from graphical operator interfaces to deci-
sion-making systems to on-board servo control. Further-
more, the architecture is intended to meet humans needs as
well as autonomy. An intrinsic characteristic, therefore, is

support for both asynchronous and synchronous processing.
Finally, ARCA enables the timely development of main-
tainable, responsive, robust, and reliable devices. Central to
this is a core framework and philosophy which supports
extensible modular design and implementation.

ARCA was developed with a systems engineering philoso-
phy. In this context, systems engineering is the iterative
process of developing architectures, requirements, and in-
terfaces in an iterative, hierarchical fashion to ensure that the
system provides success through the balancing of perfor-
mance, cost, schedule, and risk10. Effective use of systems
engineering requires understanding the interrelationship
between components through all project phases: concept
formulation, design analysis, integration, and testing. Sys-
tems engineering, however, should not be viewed merely as
a discipline, but rather as a basic philosophy from which to
approach every aspect of design. In particular, it is important
to view architectural design decisions and implementation
in the context of a mission11. Thus, throughout the design of
ARCA, emphasis was placed on creating a framework
which enables the efficient development of space telerobotic
systems, rather for generalized robotic devices.

ARCA’s design incorporates the five guiding principles
shown in Table 2. Modularity, simplicity, and flexibility are
key elements for achieving clean, reliable, and robust sys-
tem design. Modularity is of particular importance since it
encourages the encapsulation of complex subsystems and
independent testing before integration. The use of heteroge-
neous systems allows for subsystem optimization through
the use of appropriate computational resources (e.g., graphics
hardware for user interfaces, multiprocessing for compute-
bound tasks). Finally, commercial technlogy provides sig-
nificant benefits such as continual, market driven improve-
ments in features, quality, and price/performance.

1from “Computational Needs Survey of NASA Automation and Robotics Missions”

Vehicle (speed) Lunar survey 
rover (0.1 m/s)

Mars exploration 
rover (0.1 m/s)

Mars 
construction 
rover (1 m/s)

Lunar 
construction 
rover (10 m/s)

Capability/function human operator 
plans, sends 
commands

Semi- 
autonomous 
navigation

Fully 
autonomous

Fully 
autonomous

Onboard navigation requirement 0.5 to 2.0 MIPS 1 to 10 MIPS 500 to 5000 
MIPS

50 to 500 GIPS

Average travel time per cycle 50 sec 1.66 min continuous continuous

Average planning time per cycle 10 sec 12.7 min continuous continuous
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artificial intelligence (e.g., goal decomposition, hierarchical
planning, blackboards) into a single framework for telerobotic
control. The NASREM architecture defined a set of standard
modules and interfaces intended to facilitate software design,
development and validation6. The architecture is hierarchi-
cally layered and horizontally decomposed. Command data
flow is strictly hierarchical, with high level commands
decomposed spatially and temporally into subcommands.

One difficulty about the architecture is that it may be overly
complex. Since NASREM attempts to codify the function
and use of module interconnections, it tends to be restrictive
and brittle when facing unforseen events. Additionally, the
architecture design stems from a base philosophy that auto-
mation and reasoning systems can be explicitly decomposed
and described. As a result, it is difficult to incorporate
reactiveness and robustness into systems. Finally, different
implementations of NASREM do not have common inter-
face specifications which impedes integration.

MOTES

In contrast to NASREM, a recent architecture developed for
telerobotic control is the Modular Telerobot Task Execution
System (MOTES). MOTES is the remote site software
component of a telerobotic system which is being developed
for space applications7. The primary goal of MOTES is to
provide control and supervised autonomous control to support
both space based operation and ground-remote control with
time delay. In particular, it was designed for large physical
& temporal separation between local and remote sites with
potential for communication delays and varying latencies.

This architecture is designed to optimize task execution
capability within a limited computational environment such
as expected in flight systems. It, therefore, allocates the
burden of processing on local (i.e., ground) sites which are
expected to have far greater computational resources7. Thus,
the architecture places task planning (asynchronous) re-
sponsibility at the local site and task execution (synchronous)
responsibility at the remote site. The primary restriction of
MOTES is the use of the Ada language. Consequently,
execution and coordination is dependent solely on the Ada
tasking model. Also, lack of methods for interfacing other
languages places a severe burden on developers to create
Ada based modules. This may prevent the use of certain
hardware and software systems.

MICA

Another recently developed robotic architecture is the
Modular Integrated Control Architecture (MICA) devel-
oped at the Oak Ridge National Laboratory. It is a two-part
software architecture which recognizes and exploits the

differences between asynchronous and synchronous con-
trol8. The asynchronous portion simulates shared memory
over a heterogeneous network which is used to communi-
cate data and events for interprocess synchronization. The
synchronous portion is based on a common clock within a
block structure and utilizes interface processes for commu-
nication to other synchronous blocks and asynchronous
processes.

Among the benefits MICA provides are extreme modular-
ity, consistent programmatic interfaces, and precise syn-
chronization for time-critical components. These factors
have enabled large development teams to efficiently work
on and complete projects. Specifically, MICA encourages
modular construction and independent testing of subsystems
before final assembly, which directly reduces integration
problems and development time.

III. Design

Requirements

Space telerobotic systems have a myriad of requirements
which a computational architecture must meet. The archi-
tecture must be capable of supporting operations ranging
from direct teleoperation to time-delayed supervisory con-
trol. These operations can occur in varying environments;
static to dynamic, structured to unstructured. At the same
time, the architecture must reconcile the differing needs of
human operators and robotic devices. Operator interfaces,
for example, may require interactive real-time graphics
while a path planner may require parallel processing hard-
ware. In short, a computational architecture for space
telerobotic systems must provide facilities for satisfying a
broad spectrum of computational requirements and charac-
teristics.

Control needs, in particular, differ widely in space telerobotic
systems. At the servo level, synchronous, real-time opera-
tion is required to maintain controller stability, often with
bandwidths up to a few kilohertz. Above the servo level,
primitive task controllers (e.g., trajectory generators or
exception monitors) may also operate synchronously but
with reduced bandwidths in the tens of hertz. At higher
levels, bandwidths may decrease further or control loops
may become completely asynchronous. Also, the level of
telerobotic automation, from direct operation to supervisory
control, will directly impact overall system requirements.
Direct master-slave telemanipulation, for example, is essen-
tially synchronous and can require 100 Hz bandwidth with
low (i.e., less than 0.5 sec) latency between master controller
and slave device. Conversely, supervised teleoperation may
be asynchronous and can tolerate significant time delays and
latencies between operator and device.
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nization. Thus, it is often unfeasible for a single person to
manage the development and a team approach is required.

However, coordination of a development team is complex
and may involve the integration of multiple researchers from
different organizations, with different objectives, and with
different levels of involvement and expertise3. In fact, this
coordination problem is often the most difficult aspect of the
development process. As a result, module definition, inter-
face specification, complexity management, and systems
integration become critical elements in robotic systems
development. To achieve success, therefore, it is clear that
a systems architecture which provides methods for effi-
ciently handling these issues is needed.

From an engineering perspective, a well-defined architec-
ture provides the underlying framework for achieving reli-
able, maintainable, cost-effective systems. Such an archi-
tecture does this by enabling methods for coherently inte-
grating diverse physical, functional, and disciplinary sub-
systems. At the same time, the architecture promotes effi-
cient design by facilitating the development of implementa-
tion specifics. For robotic devices, in particular, a well-
defined computational architecture offers three important
benefits. First, it provides a disciplined methodology for
building complex systems from smaller components. Sec-
ond, it offers an environment for coordinating processes,
resolving conflicts, and handling exceptions. Most impor-
tantly, though, it provides a core framework for unifying
disparate modules such as user interfaces, control systems,
sensors, mechanisms and processors into a cohesive system.

The Ames Robotic Computational Architecture

It is extremely important to recongize, however, that a single
computational architecture is not appropriate for all tasks. In
fact, almost all architectures will work well on simple
laboratory cases, but perform poorly on real-world prob-
lems. Additionally, the choice of an architecture is strongly
domain and task dependent. What works well for one
application may fail for another. Moreover, there have been
too few robust, working systems to generalize or conclude
what an optimum architecture looks like. Or even what
optimum means. Yet, it has been shown that the use of an
appropriate architecture can greatly impact and enhance the
life-cycle of a robotic system.

Given the task of efficiently constructing space telerobotic
systems, therefore, the IMG has developed the Ames Ro-
botic Computational Architecture (ARCA). ARCA pro-
vides a unified framework for integrating diverse sub-
systems and components, ranging from servocontrollers to
operator interfaces. In addition, it reconciles a broad spec-
trum of processing domains, enables the development of

complex systems and reduces the difficulty of systems
integration. ARCA differs from other systems by its reliance
on commercially available technology and by its core sys-
tems philosophy. The architecture was developed using a
systems engineering approach with emphasis placed on
understanding the interrelationship between system com-
ponents and on maximizing the overall system performance.

II. Related Work

There have been significant advances in robotic computa-
tional architectures during the past decade. System develop-
ers have typically relied upon these architectures to guide the
construction of robotic devices and for providing computa-
tional services (e.g., communications, processing, etc.) to
subsystems and components. These architectures, however,
have tended to be task and domain specific and have lacked
suitability to a broad range of applications. For example, an
architecture well suited for direct teleoperation tends not to
be amenable for supervisory control or for autonomous use.

One recent trend in robotic computational architectures has
been a focus on behavior-based or reactive systems. Behav-
ior based refers to the fact that these systems exhibit various
behaviors, some of which are emergent4. These systems are
characterized by tight coupling between sensors and actua-
tors, minimal computation, and a task-achieving “behavior”
problem decomposition5. Although such systems have shown
promise and have favorable attributes (e.g., robustness,
minimal processing requirements), the underlying architec-
ture appears to be suitable only for a limited range of
applications. In particular, behavior-based architectures work
well when system scaleability, human-machine interaction
or task complexity are not overriding concerrns.

The other leading architectural trend is typified by a mixture
of asynchronous and synchronous control and data flow.
Asynchronous processes are characterized as loosely coupled
and event-driven without strict execution deadlines. Most
graphical user interfaces operate asynchronously. Synchro-
nous processes, in contrast, are tightly coupled, utilize a
common clock and demand hard real-time execution.
Servocontrollers and sampled data systems are representa-
tive synchronous processes. In general, systems built in this
architectural style are larger, more complex and employ
traditional (e.g., “top-down”, “bottom-up”) decompositions
than strictly behavior based systems.

NASREM

One of the earliest computational architectures is the NASA/
NBS Standard Reference Model for Telerobot Control
(NASREM). Developed during the early 1980’s, NASREM
was an early attempt to incorporate many concepts from
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Abstract

This paper describes a computational architecture which
supports the development and operation of semi-autono-
mous robotic systems. The Ames Robotic Computational
Architecture (ARCA) provides a unified framework for
integrating diverse subsystems and components, ranging
from servocontrollers to operator interfaces. In addition, it
reconciles a broad spectrum of processing domains, enables
the development of complex systems and reduces the diffi-
culty of systems integration. ARCA differs from other
systems by its reliance on commercially available technol-
ogy and by its core systems philosophy. The architecture
was developed using a systems engineering approach with
emphasis placed on understanding the interrelationship
between system components and on maximizing the overall
system performance. The requirements, design and imple-
mentation of the architecture are presented together with
case studies of operational robotic systems.

I. Introduction

Background

The Intelligent Mechanisms Group (IMG) at the NASA
Ames Research Center is an applied research team engaged
in the development of space robotic systems. This applica-
tion focus is driven by the importance of intelligent mecha-
nisms technology to future NASA missions1. In particular,
the IMG is investigating systems in support of the NASA
Telerobotics Program. The primary goal of this program is
to develop, integrate and demonstrate telerobotic technolo-
gies which will lead to increasing the operational capability,
safety, cost effectiveness and probability of success of
NASA missions2. Thus, the IMG seeks to develop systems
to fulfill this objective and to advance human-machine
capabilities through the implementation of space robotic
systems.

The development of such systems, however, is a complex
task which is constrained by several factors. First, the
appropriateness of providing and utilizing autonomy must

be determined for each application. Mission guidelines, for
example, might dictate the use of suited astronauts for
certain satellite servicing tasks, whereas automated con-
struction might be broadly applicable to planetary habitat
construction. Second, environmental factors and resource
availability will directly impact any set of tasks. On-board
processing for a planetary rover will be constrained by mass
and power restrictions. Hence, capacity for automation may
be severely limited. Finally, it is necessary to understand the
consequences of mixing humans and robotic systems. This
knowledge is crucial for unifying the two in such a way that
the advantages of both are magnified and that the limitations
of both are minimized2.

Current IMG efforts are focused on developing space
telerobotic systems which utilize a mixture of teleoperator
and robotics technologies. These systems are semi-autono-
mous; they exhibit some on-board autonomy but are prima-
rily intended to be controlled by supervising humans. They
are targeted for applications (e.g., space construction, re-
mote operations on planetary surfaces, habitat assembly) for
which supervisory control can return significant benefits.
Thus, a certain level of autonomy is necessary to guarantee
safe, nominal system operation. Additionally, these space
telerobotic systems differ from existing terrestrial counter-
parts. In contrast to current ground-based systems, for
example, space robotic devices must provide support for a
mixture of manual and automated control, operate in chang-
ing and unstructured environments, and handle variable
communications delays and latencies betwen the operator
and the remote system. Lastly, these systems are being
developed to demonstrate potential mission scenarios through
earth-based simulations. As such, they are intended to be
operated and evaluated in field environments rather than
laboratory settings.

Need for a Computational Architecture

Robotic systems are complex and tend to be difficult to
develop. They integrate multiple sensors with effectors,
have many degrees of freedom and must reconcile hard real-
time systems with systems which cannot meet real-time
deadlines3. Multiple data streams (e.g., sensory, command,
knowledge) from multiple sources must be processed into
action in a timely fashion. Integration is difficult because it
requires the assembly of many complex subsystems into a
structure with high degrees of interconnection and synchro-
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